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Optimum power generation from a moving plasma 

By JOSEPH L. NEURINGER 
Plasma Propulsion Lmbomtory, Republie Aht ion Corporation, Farmingdale, 

Long Island, New York 

( h i v e d  27 April 1969) 

The possibility exista of directly using the plasma, resulting from a controlled 
fusion reaction, to generate electricity by electromagnetic induction. Two special 
cases of a more general problem are considered here: ( 1) the extraction of optimum 
power from the steady one-dimensional flow of an incompressible inviscid plasma 
across a uniform transverse magnetic field in an externally loaded channel of 
arbitrarily varying cross-section, and (2) the extraction of optimum power from 
the steady one-dimensional flow of a compressible inviscid plasma across auni- 
form transverse magnetic field in a channel of uniform cross-section. In each case, 
the magnitude of the required external loading at optimum power operation is 
determined as a function of the parameters which characterize the hydro- 
magnetic interaction. Also determined are the magnitudes of the terminal voltage, 
power, fluid mechanical to electrical conversion efficiency, and the variation of 
the fluid dynamicd variables along the channel at optimum power. 

1. Introduction 
With controlled thermonuclear fusion a possibility for the future (Post 1956), 

the question may be raised as to the best, most efficient way of utilizing the energy 
liberated for electric power generation. The conventional steam-turbine method 
of generating electricity, which involves moving parts of heavy cumbersome 
machinery, may not in this cue  be the most practical and efficient way of electric 
generation. A possible method of electric generation which does not involve 
moving parts is generation by electromagnetic induction using the highly con- 
ducting plasma of the reaction products as the working fluid. The inductive action 
may be described as follows. A plasma moving perpendicular to a magnetic field, 
both flow and field being horizontal, has induced in it a vertical electric field. If 
the flow is in a channel with top and bottom walls conductors, and these walls are 
connected by an external load, then current will flow through the plaema and 
external load. Further, it is contemplated that by utilizing some of the mechanical 
energy of the exhausted ionized gases in a plasma pinch engine (Kunen 1958), 
electric power may be generated to be used either as a prime or auxiliary power 
unit for the engine system. 

The dynamical state of the plasma, characterized by the state variables uo, po, 
po and To exiting from a thermonuclear reactor or exhaust of a pinch engine will 
probably be fixed by the operating power level of the reactor. Also, the channel 
entranoe width and length may be fixed by space and other limitations. We then 
pose the following question. For a channel of given entrance cross-section and 
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length, what must be the shape of the channe1,'distribution of applied magnetio- 
field strength and magnitude of applied external loading so that maximum 
power may be extracted by the external load? The derivation of the conditions 
for maximum power transfer from conventional generators is developed in 
elementary texts, but for a plasma generator of the type considered here the 
situation is much more difficult to analyse because of the complex hydromagnetio 
interaction between a variable magnetic field and a compressible electrically 
conducting fluid continuum. 

X i 
x -  1 

F I G ~ E  1. Diagram of plaema generator. 

To simplify the analysis, consider the two-dimensional channel shown in 
figure 1. The channel is of unit breadth out of the paper. The plasma moves in the 
positive z-direction as shown, entering the channel of fixed opening yo with fixed 
values u,, po, po and To of the state variables. A magnetic field, normal to the 
paper and directed into it, is assumed to be an unknown function of x only. The 
following simplif+g assumptions are made: 
(a) The flow is one-dimensional, i.e. the fluid dynamical state variables vary in 

the z-direction but not over the cross-section. 
(b) The magnetic Reynolds number (see 0 5 )  is small; that is, any effects on the 

fluid flow of secondary magnetic fields resulting from the induced current dis- 
tribution are negligible, because either the secondary magnetic fields are too 
small or are in the wrong direction to produce appreciable effects. 

(c) The induced currents in the x-direction are small compared to those 
induced in the y-direction, and are neglected. 

(a) The plasma behaves like a perfect gas. 
(e) The intrinsic properties d and y of the plasma are taken to be constant. 
(f) The fluid is assumed inviscid and non-heat conducting, so that the only 

(9) The plasma is assumed to be electrically neutral so that no space-charge 

(h) The motion of the plasma through the channel is smooth, i.e. shock free. 
(i) The channel walls are perfectly conducting. 
The extremum problem, as outlined above, was formulatedin Neuringm (1958), 

using the techniques of the calculus of variations to obtain the appropriate system 

dissipation is electrical. 

sheaths are developed near the conducting walls. 
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of differential equations and boundary conditions. These equations are each of 
first order and highly non-linear, and they require machine calculation for their 
solution. In the special cases where the differential constraints, i.e. the fluid flow 
equations, are integrable, analytical solutions may be obtained, however, without 
resorting to the mathematical apparatus of the calculus of variations. The two 
special cases considered in this paper are: 

(1) The flow of an incompressible, inviscid plasma across a uniform transverse 
magnetic field in a channel of fixed length in which the variation in cross-section 
along its length is arbitrarily prescribed. 

(2) The flow of a compressible, inviscid plasma across a uniform transverse 
field in a channel of fixed length and uniform cross-section. 

In each of these special cases, we shall determine the magnitude of the required 
external resistance, at optimum power generation, as a function of the parameters 
which characterize the hydromagnetic interaction. Also, we shall determine the 
resulting terminal voltage, power, fluid mechanical to electrical conversion 
efficiency, and distribution of the fluid dynamical state variables along the channel 
at optimum power. 

2. Notation 
The rational M.K.S. system is used throughout. 

u = velocity 
p = pressure the generator 
T = temperature 7 ; 1 =  eEciency 
p = density m = constant mass flow rate through 
E = electric intensity channel 
B = magnetic induction c, = speed of Alfvhn waves 
H = magnetic intensity P = dimensionless pressure 
J = current density U = dimensionless velocity 
I = total current X = dimensionless distance along channel 
r = resistance per unit length k’ = dimensionless terminal voltage 
R = total resistance & = Mach number of flow at channel 
c = plasma conductivity entrance 

pe = magnetic permeability 
x = distance along channel 
y = channel width parameter 
I = channel length 

P = electric power 

k = voltage appearing at  the terminals of 

a = I/y, 
6 = magnetohydrodynamic interaction 

a = parameter (function of y and &&) 
p = parameter (function of y and M,) 
0 = subscript representing entrance values 

= ratio of specific heat 

3. The circuit and magnetohydrodynamic equations 
Let r (x)  represent the external unit resistance at station x along the channel. It 

may be defined as that element of the parallel resolution of the total external 
resistance which would carry the full current density associated with that station. 
Let J(x )  represent the induced current in the y direction per unit length of channel 
at stations. The external voltage drop is thenJ(x) r ( z ) .  Thevoltagedropdue to the 

19 Fluid Mech. 7 
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internal resistance of the plasma is J ( z )  y ( z ) / e .  Kirchoff ’s law then gives for the 
closed circuit at station x: 

JY 
c ’  Ey = J r + -  

where E = uB. (21 

Assumptions i and c imply Jr = k,  (3) 

where k,  the voltage drop across the external load, is a constant to be determined, 
Using (2) and (3) in (l), we obtain 

(4) 
0- 

J = -{UBy-k}. 
Y 

The power generated in the external circuit per unit length is 

and the total power generated is 

P = k c [ ( u B - i ) d z .  

The problem then is to find the velocity distribution u(z) and the constant k 

The one-dimensional compressible fluid flow equations, modified to account for 
which when inserted into ( 5 )  maximizes $. 

the hydromagnetic interaction, are (Resler & Sears 1958): 

C d i n u i t y  equation 
PUY = POUOYO = m, 

where ra represents the constant mms flow rate through the channel. 

Hornenturn equation 

where J B  (with proper sign) represents the Lorentz force per unit volume 
exerted by the magnetic field on the fluid. The last term is obtained using (4) for J .  

Energy equation 

where the first term on the left-hand side represents the net flux of internal plus 
kinetic energy through the faces of a volume element, the second term represents 
the rate of mechanical work done by the pressure forces, the third term represents 
the rate of doing work by the Lorentz force, and the last term represents the 
Jodean dissipation. (8’) can be written, by means of (a), as 

++u2]puy)+kc(uB- i) = 0. 
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An interesting observation may be made using the energy equation in the 
form (8). Substituting for the integrand in (5) using (8) and performing the 
integration, we obtain, using (6), 

That is, the power delivered to the external circuit is equal to the difference in 
the total, or stagnation, enthalpy flux at the entrance and exit of the channel. 

4. Case 1: incompressible inviscid plasma flowing across a uniform 
transverse magnetic field in a channel of arbitrarily prescribed cross- 
section 

Let y ( z )  represent the arbitrarily prescribed variation of channel cross-section 
with length. The fluid density is uniform along the channel, so that the fluid 
velocity, from (6), is given by u(z) = m/p,y. Substituting for the velocity in the 
expression for the power (6) ,  we obtain 

A 

For maximum power, we require dP/dk = 0. Carrying out the differentation, 
we obtain 

Two interesting observations may be made using (1 1). 
(1) The value of the external or terminal voltage drop at maximum power is 

independent of the channel shape. 
(2) Using (1 1) in conjunction with the condition that the induced e.m.f. at each 

station along the channel equals uBy = uoByo = constant, it is seen from Kir- 
choffs law that the internal voltage drop is equal to the external drop and hence 
a local matching theorem for maximum power is valid; i.e. the applied external 
unit loading, r(z) ,  at station z must be equal to the unit internal resistance of the 
working plasma at that station. It is not too surprising that in the case of incom- 
pressibility local matching is required for optimum power extraction. This is so 
because incompressibility yields the condition that the induced e.m.f. at every 
station along the channel is the same. This, coupled with the fact that the external 
voltage drop at  each station must be identical (the channel walls are perfectly 
conducting), means that each station is uncoupled from the others and so can be 
treated as independently isolated. Conceptually, we may visualize the incom- 
pressible plasma generator as one consisting of a continuous distribution of 
independently acting elemental generators each with its own internal resistance. 
The elements (generator plus internal resistance) are then connected in parallel 
and the resulting combination feeding energy to an external load connected to the 
conducting walls. 

19-2 
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The maximum power is, substituting for k from (1 1) into ( lo) ,  

The analysis leading to (12) was based purely on electrical energy considera- 
tions, i.e. Kirchoff's law and the definition of electrical power in terms of current 
and resistance. It is instructive, therefore, to reconsider the optimum power 
formula from a fluid mechanical energy viewpoint. Before doing so, the pressure 
distribution along the channel, at optimum power operation, is required. Sub- 
stituting the value for k obtained in (1 1) into the momentum equation (7), we 
obtain the following differential equation for the pressure distribution along the 
channel: 

Integrating, and using the boundary conditionp = po at x = 0, we obtain 

Now the fluid mechanical energy density of an incompressible, inviscid fluid is 
given by the Bernoulli expression ( p  + 4p0u2). The energy flux at any station x is 
then m/po(p + 4pou2). Energy conservation requires that the difference in the 
fluid mechanical energy flux at the entrance and exit of the channel goes into 
electrical energy. Since we have already demonstrated that at  optimum power 
operation the matching theorem is valid, the electrical energy must consist of two 
equal parts: (1) the electrical energy extracted by the external load, and (2) the 
electrical energy delivered to the fluid and which is dissipated internally in the 
form of heat. Mathematically, we have 

A 

Substituting the expression (13) for p into (14), we find that P reduces identi- 

Incidentally, since the fluid pressure can not be less than zero at the channel 
ally to (12). 

aa the condition which must be satisfied between the fluid mechanical, electro- 
magnetic, and geometrical properties of the system. 

Finally, as an interesting check on the inner consistency of what has gone before, 
we shall derive the maximum power formula using the techniques of lumped 
circuit theory. The external conductance in length dxis dx/r(x). The total conduc- 
tance is then 

and the total external resistance is 
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The current flow in the external load is 

I = J(x)dx, 1: 
and since J = k/r(x), we have I = k -. Ct) 

The total power delivered to the outside circuit is 12Re,t. Using the above 
expressions for I and &t, we obtain 

Now at optimum power, k = &(uoyoB) and r ( z )  = y ( x ) / v  (local matching). Sub- 
stituting for k and r (z )  into ( l6) ,  we see that (16) reduces to (12). 

For later comparison with the compressible flow case, we repeat the principal 
result of this section: for an incompressible plasma, the condition for optimum 
power requires that the external load be equal to the internal resistance of the 
plasma. 

5. Case 2: compressible inviscid plasma moving across uniform trans- 
verse magnetic field in a channel of uniform cross-section 

Analysis 

We treat the optimization problem for the compressible flow case in a different 
manner than the incompressible case. Instead of seeking to maximize the power 
integral (5) ,  we shall avoid a complicated integration by considering the maximiza- 
tion of the equivalent expression for the power, namely (9). (9) states that the 
electric power delivered to the external load is a maximum when the total 
enthalpy flux at the channel exit is a minimum. However, before we can mini- 
mize the total exit enthalpy flux, we must fist integrate the fluid mechanical flow 
equations (6), (7) and (8), in order to determine the appropriate expressions (to be 
inserted into (9)), for the velocity, pressure and density of the plasma at the 
channel exit. 

Before integrating, it is convenient to  introduce the following dimensionless 
variables : 

and the following dimensionless parameters: 

The meaning of the fist three parameters is fairly obvious and needs no further 
consideration. Let us briefly consider the significance of the fourth. Remembering 
that B = peH and the definition of rn, we can write 6 as 

In  the next to the last form, 6 represents the ratio of the electrical body force to 
the dynamic or inertial force on the conducting fluid (Resler & Sears 1958). Hence, 
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when S is large we can expect the applied magnetic field to produce significant 
effects on the fluid motion. 

Consider now the resolved form of 6. The term (peu,aZuo) is dehed  as the mag- 
netic Reynolds number (baaed on channel length). It is a measure of the effect of 
the hydromagnetic interaction on the magnetic field, and may be interpreted as 
the ratio of the motion induced magnetic field strength to the applied magnetic 
field strength. The term (peHs/pou~) can be written as 

where c, = ,/(peH2/po) represents the speed of propagation of certain magneto- 
hydrodynamic waves, called Alfvhn waves. Thus J(pou~/peH2) is analogous to 
a Mach number where the usual speed of sonic disturbances is replaced by the 
speed of the Alfvh wavelike disturbances. The dimensionless number, S, we shall 
henceforth call the magnetohydrodynamic interaction parameter. 

In terms of the dimensionless variables and parameters, equations (7) and (8) 
become 

(7’) 

Eliminating (U  - l/k’) from (7’) using (S’), (7‘) becomes 
dU -+--P dP - [ - P U + * U j  a y = 0. 
ax ax ax y-1 

Integrating, using the boundary conditions U = 1 and P = l/yx at X = 0, we 

(17) 
obtain (a + k’B) - (U - (*k’) US) 

1 - [YRY - 1)Ik’U P =  ’ 

Substituting for P in (7‘) using (17), we obtain, after some differentiations and 
combination, 

Y 2 %[(l----PU) Y -(l--k‘U) 1--- k’U) 
Y-1 ( Y-1 

+ -2- k’{ (a+k’B)-  (u- 3 k‘ us))] +%(1--& k‘UY(  u- $) = 0. (18) 
Y-1 

Integrating (18), using the boundary condition U = 1 at X = 0, we obtain the 
following expression for U as an implicit function of X: 
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The total exit enthalpy flux, in terms of the dimensionless variables, is 

where the argument a is the value of X at the channel exit. The necessary 
condition that the total exit enthalpy flux be a minimum requires the derivative 
with respect to k' of the above expression to equal zero, or 

Differentiate (17) with respect to k' to obtain dP(a)/dk'. Substituting for 
dP(a)/dk' into (20), rearranging and simplifying, we obtain, 

Differentiating (19) with respect to k', rearranging and simplifying, we obtain 

(1 + 2 + 3 } d 2 + { 4 + 5 + 6 + 7 + 8 + 9 }  = 0, (22) 
where 

4 = -y(y- 1) (a+2k',!?)log (---) 1 - k ' U .  
l -k '  ' 



296 Joseph L. Neuringer 

Eliminating dU(a)/dk' from (20') and (22), we obtain 

{ 1 + 2 + 3 ) B - { 4 + 5 + 6 + 7 + 8 + 9 } A  = 0. (23) 

Equation (23), together with equation (19) (evaluated at X = a), form a system 
of two simultaneous transcendental equations in the two unknowns k' and U(a)  
aa functions of the parameters y, it&, and 6. 

Results and discussion 

A specification of the 'input' parameters y, Mo, S and a, and the quantities k' and 
U(a) obtained from the simultaneous solution of (23) and (19) is sufficient to 
determine completely all of the electrical and fluid mechanical properties of the 
interaction. In  particular, we shall now derive, in terms of these parameters, 
explicit formulas for (1) the ratio of the required external resistance at optimum 
power to the internal resistance of the equivalent incompressible flow, (2) the 
power, and (3) the generator efficiency. 

Eliminating J from (1) and (3), using (Z), and solving for r, we obtain 

kY0 
c(uByo - k) - T =  

Proceeding similarly as in 9 4, we sum in parallel the continuous distribution of 
these elemental resistances, and obtain 

An element of internal resistance is yo/o. The total resistance, Rint, of an incom- 
pressible plasma moving in a channel of uniform width yo is then yo/cZ. Forming 
the resistance ratio, integrating the second term of the above integral, and 
transforming to dimensionless variables, we obtain 

Forming dX/dU as an explicit function of U by differentiating (19), substituting 
into the latter integral and performing the integration, we Snally obtain 

Rmt k' 
Red 
- = T[lo+ll +12]-1, 

where 10 = r*) - 1 - y(y - 1) (a + k'p) 2k' k' 

where it is understood that U is evaluated at X = a. 
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We emphasize once again that in the above formulas, Rint does not represent 
the internal resistance of the compressible plasma, but the resistance which would 
obtain had the plasma been treated as incompressible. It is clear that only in the 
case of incompressibility, where the induced e.m.f. at each station is the same, can 
we add in parallel the continuous distribution of elemental internal resistances. 
We chose to normalize aXt with respect to the incompressible Rint because the 
latter is a resistance property of the system which is independent of the hydro- 
magnetic interaction and depends only on the conductivity of the fluid and the 
geometry of the system (i.e. the width to length ratio). 

The formula for the optimum power is obtained as follows: 

A 8 ax P = 12Rext = kfOrm (see $4).  

Substituting the expression for r(x) ,  obtained above, into the integrand, and 
transforming to dimensionless variables, we obtain 

The bracketed term is precisely (Rint/&xt) ; hence 

We d e h e  the efficiency or effectiveness, 7, of the generator as 

Optimum electric power generated 
= Total input enthalpy flux 

Forming the ratio of (26) to the total input enthalpy flux, i.e. 

and transforming to dimensionless variables, we obtain 

where the last term represents the difference in entrance and exit stagnation 
enthalpy fluxes divided by the entrance flux. It is seen that the efficiency 7 is 
a complicated function (because of the complexity of the resistance ratio term) of 
the two dimensionless parameters 6 and Ho, characterizing respectively the 
hydromagnetic and compressive properties of the system. 

Solutions of the system of equations (23) and (19) (evaluated at X = a )  for k' 
and U(a)  were obtained on an I.B.M. 704 computer. Solutions were obtainedfor 
the particular Mach number M, = 0-3 and for a y equal to $ (corresponding to  the 
assumption that the plasma be treated as a monatomic perfect gas). S was allowed 
to vary continuously until a maximum am, - 30 was reached beyond which no 
solutions could be generatxi. 
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Consider table 1 which lists the magnitudes of all the dimensionless electrical 
and fluid mechanical quantities. It is seen that the solution exhibits an Ltsymptotic 
behaviour near &it- 4. In particular, if attention is focused on the column of 
exit Mach numbers M(a),  it is noted that for the second branch (6 > a), M(a)  is 
always equal to one. We conclude, therefore, the existence of a finite range of 6, 
i.e. &,fit < 6 < amax, where the required external loading at optimum power is that 
which forces a Mach number one flow at the exit. 

8 
0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
2.0 
4.0 
6.0 
8.0 

10.0 
12.0 
14.0 
16.0 
18.0 
20.0 
26.0 
30.0 

k' 
2-0017 
2.0035 
2.0076 
2.0122 
2.0176 
2.0236 
2.0736 
2.0077 
1.4202 
1.2407 
1.1662 
1.1083 
1.0783 
1.0582 
1.0442 
1.0340 
1.0186 
1.0105 

2/k' 
0.99914 
0.99823 
0.99623 
0.99394 
0-99 131 
0.98832 
0.96450 
0.99617 
1-4083 
1.6120 
1.7299 
1.8045 
1.8547 
1.8899 
14164 
1.9342 
1.9636 
1.9791 

RextIRint 
0.99166 
048321 
0.96585 
0.94781 
0.92901 
040942 
0.79390 
0.62218 
1.2769 
1.9160 
2.5444 
3.1645 
3.7780 
4.3866 
4.9893 
6.6887 
7.0136 
8.6437 

I P i n c  7% 
1.0075 0.1466 
1.0163 0.29519 
1.0316 0.69858 
1.0487 0.91076 
1.0671 1.2324 
1.0868 1.5642 
1.2149 3.4129 
1.6011 9.2909 
1.1029 13.672 
0.84134 15.801 
0.67987 17.127 
0.67024 17.983 
0.49093 18.665 
0.43086 18-976 
0.38389 19.274 
0.34608 19.496 
0.27760 19.846 
0.23166 20.368 

V(a)  
1.0067 
1.0136 
1-0283 
1-0441 
1.0812 
1.0799 
1.2093 
2.7903 
2.7237 
2.6882 
2-6671 
2.6533 
2-6438 
2.6372 
2.6323 
2.6287 
2.6230 
2.8146 

P(4 
6.6096 
6.6515 
6.4321 
6.3080 
6.1786 
6.0434 
5.2425 
1.6742 
14342 
1.6130 
1.6002 
1-6920 
1.6863 
1.6823 
1.6794 
1.5772 
1.6738 
1-6687 

M(a) 
0.30230 
0.30468 
0.30976 
0.31614 
0.32101 
0-32745 
0.37296 
1~0000 
1.0000 
1~0000 
1.0000 
1.0000 
1.OOoo 
1-OOoo 
1.oOOo 
1.0000 
1*0000 
1*0000 

TAB- 1. List of the dimensionless electrical and fluid dynamical variables. 
M,=0.3; y = #  

At least for the branch characterized by M(a)  = 1, the condition which 
determines a,, may be formulated aa follows. The Mdch number at any point in 
the channel in terms of the dimensionless fluid dynamical variables P and U is 
given by M = J( U/yP).  The condition M(a)  = 1 at the exit yields P(a) = U(a)/y.  
Substituting for P(a) in (23), we obtain 

The simultaneous solution of (19), (23), and (28) yields 6- and the corre- 
sponding limiting values of k' and U(a). 

Let us consider now the electrical quantities. Referring to the definitions of 
k and k', both compressible and incompressible, it is seen that 2/k' represents the 
ratio of the compreesible terminal voltage to the terminal voltage obtained by 
assuming the gas to be incompressible. Similarly, I/Iinc, the ratio of the comprea- 
sible to the incompressible current, is given by (2/k')(R4&xt). It should be 
emphasized that incompressibility is defined and used here in the sense of 5 4; 
i.e. the density of the fluid is everywhere constant in space and time and not aa the 
limit flow approached aa the Mach number is made to approach zero. 



Optimum power generation f r m  a mowing plasma 299 

Plots of the resistance, voltage and current ratios as functions of the magneto- 
hydrodynamic interaction parameter 6 are shown in figure 2. Several general 
observations can be made. First, for weak interactions (i.e. 6 small), the fluid 
behaves as if it were incompressible; that is, the resistance, terminal voltage and 
current remain close to the corresponding incompressible values. Secondly, the 
asymptotic behaviour is clearly marked and is represented in the resistance and 
current curves as forming cusps at the critical 6. Thirdly, for large 6, the behaviour 
of the solution is very much different from the corresponding incompressiblecase. 
The terminal voltage ratio approaches the asymptotic value two while the external 
load ratio continues to increaae sharply with 6. This behaviour is very significant, 
for it indicates (as is often done in fluid dynamics in order to obtain a first estimate 

6 
FIUURE 2. Resistance, tenninel voltage end current ratios against 
megnetohydrodynemic interaction parameter 6. M ,  = 0.3, y = g. 

to some fluid mechanical interaction), that one cannot approximate the inter- 
action by simply treating the fluid as incompressible. For example, it is seen from 
the figure, that for 6 very large, the external load required at optimum power is 
close to an order of magnitude larger than the corresponding incompressible load. 

Figure 3 is a plot of the efficiency of the plasma generator as defined above. As is 
expected, for small 6, when the effect of the magnetic field on the fluid flow is 
small, the efficiency is small. It increases as 6 increases approaching a value 
slightly over 20 yo in the neighbourhood of 6-. 

Findy, let us consider briefly the effect of the interaction on the fluid 
dynamical variablea. The distribution of all of the fluid dynamical variables with 
distance along the channel was obtained for every 6 in each of the two branches 
with the view to determining, whether any of the solutions belonging to the two 
branches corresponded to any peculiar phenomena, e.g. choking. In every case, 
the dynamical variables were single valued and varied continuously with channel 
distance so that behaviour peouliar to choking (Resler & Sears 1958) was absent. 
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Figure 4 shows the variation of the normalized fluid dynamical variables with 
fractional distance along the channel for the case S = 20. It is seen that the 
pressure and density decrease while the velocity and Mach number increases 
downstream of the entrance. It appears that, as far as the direction of change of 

6 

FIGURE 3. Efficiency against magnetohydrodynmnic interaction parameter 6. 
M ,  = 0.3, y = s. 

FIGURE 4. Variation of normalized fluid dynamical state variables with dimensionless 
distance along channel. M = 0.3, y = 9, 6 = 20. 

the fluid variables are concerned, the effect of the interaction is analogous both to 
channel flow with friction and no heat transfer or to channel flow with heat addi- 
tion and no frictional forces (see, for example, Shapiro 1953). The velocity increaae 
along the channel l e d  to a very interesting conclusion concerning power delivery 
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to the external load. It was seen in $ 3  that the contribution to the power delivered 
to the external load per unit channel length at station z is ku(uB - k/y,). Since 
k, u and B are constants, the power contributed depends on the magnitude of the 
velocity at that station. We conclude, therefore, that most of the power delivered 
to the external load comes from the induction taking place near the exit region of 
the channel. 

6. Conclusion 
In this paper, solutions for the compressible generator were obtained for only 

one particular value of the entrance Mach number. It is planned to obtain 
a family of solutions over a wide range of Mach numbers both subsonic and 
supersonic. Interest here is not only toward the determination of the effect on the 
interaction of the various states of compressibility of the entering plasma, but to 
see whether the asymptotic behaviour occurs for other Mach numbers as well, and 
at what values of 6. The reason for, and the physical significance, if any, of the 
asymptotic behaviour itself should be investigated. Further, a thorough examina- 
tion should be made into the validity of the assumptions made in 0 1 directed 
towards estimating the practicality of the results. In particular, the effect of the 
possible development of space charge and the formation of space charge sheaths 
near the walls should be thoroughly investigated. 

In conclusion, it is hoped that, while this paper concerned itself mainly with the 
theoretical treatment of a very highly idealized but interesting problem in 
hydromagnetics, it will also serve in giving a first insight into the behaviour of 
a type of generator which may prove to have future practicality. 
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